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SUMMARY 

The most common numerical methods that are used by physical scientists to approximate partial 
differential equations employ finite differences and/or finite elements. In addition, compartment 
analyses have been adopted by ecological system analysts to simulate the evolution of processes 
governed by differential equations without spatial derivatives. An integrated compartment method 
(ICM) is proposed to combine the merits of these three numerical techniques. The basic procedures of 
the ICM are first to discretize the region of interest into compartments, then to apply three integral 
theorems of vectors to transform the volume integral to the surface integral, and finally to use 
interpolation to relate the interfacial values in t e r n  of compartment values to close the system. These 
procedures are applied to the Navier-Stokes equations to yield the computational algorithm from 
which computer programs can be coded. The computer code is designed to solve one-, two-, or 
three-dimensional problems as desired. The program is applied to two simple cases: wake formation 
behind an obstacle in a channel and circulatory motion of a body of fluid in the square cavity. These 
preliminary applications have shown promising results. 
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INTRODUCTION 

There are many ways in which sets of algebraic equations can be constructed so as to 
simulate the behaviour of the Navier-Stokes equations, but some methods are more 
accurate, more convenient to use, or more readily convergent in iterative solution proce- 
dures. Since cases for which exact solutions to the Navier-Stokes equations exist are very 
limited, scientists and engineers are naturally interested in obtaining solutions by numerical 
means. Thus, rules are needed for the best ways of formulating the corresponding algebraic 
equations in particular circumstances. Specifically, a solution must be found for a set of 
elliptic and parabolic differential equations in which both the first and second derivatives of 
dependent variables appear. This set of equations governs the time-dependent motion of a 
viscous, incompressible fluid in a region enclosed by very complicated geometries. Therefore, 
methods to approximate these governing equations and to best represent the region of 
interest must be continuously developed. 

The most common numerical methods used to solve the Navier-Stokes equations are finite 
differences14 and finite elements.>' The advantages of finite element methods are their 
inherent ability, because of the integral formulation, to handle complex curved boundaries 
and their ease in applying natural boundary conditions. Finite difference approximations 
offer great economy because of simple interpolation for the derivatives. On the other hand, 
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compartment analyses8 have been widely used by ecological system analysts to simulate the 
evolution of processes that are governed by differential equations without spatial derivatives. 
The arbitrary compartmentalization of various shapes and sizes by compartment analyses 
offers great flexibility of not only discretizing the region but also of more closely representing 
the compound configurations. 
This paper presents a method that combines the merits of the above three categories. The 

method is termed the integrated compartment method (ICM). It is an extension of the 
integrated finite difference method-IFD@ that was routinely applied to groundwater flow 
and heat transport problems in the porous Whereas the IFDM employed only the 
divergence theorem, ICM will use three integral theorems of vectors. This generalization is 
necessitated by the fact that the Navier-Stokes equations cannot be carved in terms of only 
the divergence of some quantities. However, we can easily arrange them in the combinations 
of gradient, divergence, and curl of the dependent variables. 

The basic steps of the ICM are (a) to discretize the region of interest into compartments, 
(b) to apply three integral theorems of vectors over each compartment to transform the 
volume integral to the surface integral, and (c) to use simple interpolations to relate the 
interfacial values in terms of compartment values to close the system. These procedures are 
applied to the Navier-Stokes equations to yield the computational algorithm from which the 
computer program is coded. The algorithm is shown to yield conditionally stable and 
convergent solutions for the pressure and velocity fields. The program is applied to two 
simple cases for demonstrative purposes. One is the study of the wake behind an obstacle in 
a channel of finite width; the other is the study of the circulatory motion of a body of fluid in 
a square cavity.'" Applications to complex prototype problems will be made in later 
communications. 

INTEGRATED COMPARTMENT METHOD (ICM) 

Any numerical method to approximate partial differential equations basically consists of 
discretization of the region, construction of a set of algebraic equations or coefficient 
matrices, and solution of the resulting matrix equations. The ICM is thus concerned with 
discretization, integration, and interpolation. These aspects will be discussed below before 
they are applied to the Navier-Stokes equations. 

Discretization of the region 

Fundamental to numerical approaches to solving the Navier-Stokes equations is the 
concept of discretization, wherein a continuous region is represented as a number of adjacent 
subregions. While regular-shaped subareas were normally used in the finite difference 
discretization, irregular-grid finite differences have been developed re~ently.'~.'~ Irregular- 
shaped grid systems have been routinely employed in the fmite element discretization. 
Practical consideration dictates that a very limited number of shapes (triangular and 
quadrilateral in two-dimensional cases, or tetrahedron and hexahedron in three-dimensional 
cases) be used in a particular problem. Besides the difiiculty of deriving basis functions for 
shapes other than these simple ones, programming considerations prohibit the inclusion of a 
large number of different shapes simultaneously. On the other hand, in compartment 
analyses, the spatial derivatives do not appear explicitly in the dserential equations. The 
implication is that a compartment or subregion can be any shape and size. The compartment 
values are, nevertheless, interrelated by the transfer coefficients which represent the interac- 
tion between compartments through interfaces. These transfer coefficients are considered as 
given parameters instead of being obtained by physical principles, resulting in spatial 
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derivatives. In the proposed ICM method, the implicit feature of the arbitrary division of the 
system into compartments of different shapes and sizes is retained, but the integral formda- 
tion and simple interpolation are applied to the spatial derivatives of the Navier-Stokes 
equations to obtain the coefficient matrix or the transfer coefficients, so to speak, in the 
terminology of compartment analyses. 
Thus, the first step of the ICM is to divide a continuous region into any number of 

subregions of various shapes and sizes. Each subregion is termed a compartment. The 
centroid of a compartment is defined as a node, and the line that connects two nodes is called 
a connector. The connector is characterized by its two end nodes, the interfacial area, the 
direction cosine of a unit vector normal to the interface, and the length scales representing 
the distances from two nodes respectively to the interface. A compartment is characterized 
by its volume and the nodal number representing it. With these definitions, the region of 
interest is ready for discretization. For example, Figure 1 shows that the region R is divided 
into 10 compartments intertwined by 14 interior-to-interior node connectors. For conveni- 
ence, one may wish to create 11 imaginary boundary compartments and thus 11 interior-to- 
boundary node connectors in this particular discretization to represent the boundary as in 

10 INTERIOR COMPARTMENT (NODES): @ - @ 
14 INTERIOR-INTERIOR CONNECTORS 

(INTERFACES): 1 - 14 

11 BOUNDARY COMPARTMENT (NODES): @ - 0 
11 INTERIOR-BOUNDARY CONNECTORS 

(BOUNDARY SEGMENTS): 15 - 25 

Figure 1. Example of region discretization 
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Figure 1. The perpendicular distances from boundary compartment nodes to the boundary 
are set equal to zero. In other words, the boundary nodes are located right on the boundary 
and the volume of any boundary compartment is zero. Of course, any other subdivision is 
possible. The major task in employing irregular compartments of various shapes and sizes is, 
however, the attention and effort demanded for the discretization. Fortunately, methods for 
automating the discretization of complex regions have been reported elsewhere.” 

In real applications, discretizing the region cannot be completely arbitrary since instability 
resulting from grid irregularity can be a problem.16 Instabilities associated with the irregular 
compartment discretization are quite like those associated with variable coefficients on 
uniform compartments. Therefore, for numerical stability, it is important that the sizes and 
shapes of compartments must be smoothly distributed through the region. In other words, 
transition of the compartment sizes and shapes from one subregion to another should be 
gradual in comparison with the coefficients of the differential equations. Properly designed, 
this should lead to the creation of a well-behaved matrix for the resulting algebraic 
equations. 

Integral formulation 

To employ the ICM, the differential equations must first be rearranged and regrouped into 
combinations of the gradient, divergence, and curl of some quantities. The following integral 
theorems of vectors are then used to transform the integration of any property over a 
compartment to that over its interfaces: 

VFdv = I n F d S  

jv V * U d u =  n - U d S  

I, V x U d v =  n x U d S  

I 
I 

where F and U are any scalar and vector functions, respectively, du is the differential volume 
in the compartment, dS is the differential surface area on the compartment interfaces, and n 
is an outward unit vector normal to the enclosing surface. The right-hand sides of equations 
(1)-(3) can be approximated as follows: 

(4) 

n * U dS = 1 ni, - U,Sij 

nij x U,S, 

i C N ,  1 n x U dS = 
i sN,  

where the subscript ij indicates that the values are to be evaluated at the interface of 
compartments i and j as shown in Figure 2,  and Ni is the set of compartments surrounding 
the compartment i. It should be noted that the summation in equations (4)-(6) is to be 
performed over all the interfaces enclosing compartment i. For example, there are four 
interfaces, ij, ik, il, and im, surroundings compartment i in Figure 2. 

A particularly attractive feature of equations (1)-(6) is their natural consequence of 
conserving the properties, F and U. For example, equation (5) applied to the continuity 
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d.. = d. + di LJ ' I 1  

LINEAR : Fii - fdiFi +diFi)/dii 

UPSTREAM : ADVECTION TERM 

Uii nii >,o Uii - U i  

Uii - nii < 0 - Uii -q 
* -  - 9 - 9  

- - &  

0 OTHER : ANALYTICAL LOCAL SOLUTION 

Figure 2. Definition of variables and interpolation 

equation would guarantee that the mass is conserved numerically. In addition, the novel 
feature of applying equations (1)-(3) to any spatial derivative is to reduce the problem to the 
approximation of (n - 1)th order derivatives on the compartment interfaces rather than the 
approximation of nth order derivatives at nodal points as used in the irregular-grid finite 
difference method.16 This is particularly significant with regard to the first- and second-order 
derivative terms in the Navier-Stokes equations. Instead of having to approximate both the 
first- and second-order derivatives by the finite difference methods, one simply has to 
approximate the function itself and the first-order derivative with simple finite difference 
interpolation at the interface. Since the first-order derivatives usually define the flux of the 
property under consideration, the reduction in the order of spatial derivatives makes it 
simple to build the physical representation at the interfaces, in particular the interface of 
different media. 

Interpolation of interfacial values 

Equations (4)-(6) involve the interfacial values. To close the system such that a set of 
algebraic equations can be obtained in which the number of unknowns equals the number of 
equations, interpolation methods must be employed to express the interfacial values in terms 
of the compartment values or the nodal values. The key to the success of the ICM lies in the 
appropriate interpolations to be used, since they are intimately related to the stability of the 
numerical solution. There may be infinite varieties of interpolations; the intuitive and 
simplest is the linear interpolation given by 

E, =(4F,+d,F,)l(4+4) (7) 
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where F, and F) are the nodal values of compartments, i and j, respectively, and d, and d, 
are the perpendicular distances to the interface, i j ,  from the nodal points, i and j, respec- 
tively, as shown in Figure 2. If the advection terms in the momentum equations are the 
dominant ones, linear interpolation may lead to an unstable solution so upstream interpola- 
tion may be used for such terms: 

Another very versatile interpolation is through the analytic solution of a local region. 
While the linear and upstream interpolations are obvious, the last category requires further 
explanation. Locally, between nodal points, i and j ,  the non-linear terms may be linearized, 
with high probability that analytical solutions may be obtained for the variation of the 
variable along the connector i-j in terms of its two boundary values.'* If this is the case, the 
locally exact solution may be used as the basis for interpolation. Using the exact solution to 
obtain the interfacial values is naturally superior to any other method. However, it should be 
noted that exact solutions are seldom obtainable because of the high non-linearity in the 
Navier-Stokes equations. Nevertheless, this exact interpolation usually is obtainable when 
one is dealing with the transport of materials having locally constant velocity. 

The most serious deficiency that may be encountered in the ICM is that the interpolated 
value is only a representative value of the interface. The value cannot be identified with a 
definite point on the interface. This deficiency can be overcome by first interpolating the 
value of each of the comer points of the interface in terms of the node values whose 
compartments join at the corner and then interpolating the value at any point on the 
interface in terms of the values at the comer points. This two-step interpolation procedure 
would greatly complicate the problem. However, it is worth pursuing for the improvement of 
the ICM. 

ICM APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS 

Gowm'ng equations 

The starting point for the derivation of the ICM computing algorithm is the vector form of 
the Navier-Stokes equations for viscous incompressible flow. Since three integral theorems, 
equations (1)-(3), are used to obtain the ICM approximations, the Navier-Stokes equations 
are carved in the combinations of these forms as follows: 

v.u=o (9) 

or 

and 

or 

-=- a' V@-A+E 
ar 

E = vV2U (134 
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in which 

o = v x u  (14) 
In addition, to facilitate the application of ICM, a divergence quantity is defined by the 
following equation: 

D = V . U  (15) 
In equations (9)-( 1 9 ,  p is the pressure, U is the velocity vector, v the kinematic viscosity, p 
the fluid density, g the gravitational acceleration, t the time, z the vertical coordinate, CP the 
total potential equal to the pressure and gravitational potentials, A the advective accelera- 
tion, E is the viscous force, w is the vorticity, and D is the divergence of the velocity, These 
seven equations contain seven unknowns, p, U, a, A, E, w, and I>. 

It is seen from equations (12a)-(13b) that four alternative forms can be written for the 
Navier-Stokes equations. These are the combinations of equations (12a) or (12b) and (13a) 
or (13b). Each form has its advantage from the standpoint of numerical approximations. A 
thorough discussion is beyond the scope of this paper. Nevertheless, our computer code has 
provided four options to handle these four alternative forms of the Navier-Stokes equations 
as described in the following section. 

Computational algorithm 

The purpose of the ICM procedures is to set up a system of algebraic equations that will 
approximate the system of equations (9)-(15) for the description of the spatially discrete 
values Ui, pi,  Qi, Ai, Ei, mi, and Di. Thus, applying equations (1)-(6) to equations (12a) or 
(12b) over the compartment i, one obtains: 

or 

where the parenthesized superscript n denotes the value to be evaluated at time nAt and the 
subscripts i and ij, represent the values of the variable at the compartment, i, and interface, 
ij, respectively. This convention will be used through the paper. Similarly, applying the ICM 
method to equations (13a)-(15), one obtains 

Eiui = v c ( U ~ ) - U ~ ) ) S i i / ~ i  
ieN8 

Eiui = -V 1 nii x wii 

wiui = c (nii x u$))sti 

DiUi  = (ai * qi"')sii 

iSN, 

i W  

Next, one applies the ICM procedure to the following Poisson equation: 
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to yield the discrete total potential at time level, (n + 1)At: 

C (Q;n+l)-@!n+l) )sZj/d,, = ~ , u , / ~ t  - C n,, - A,,s,, + C (N,, - EJS,, (21) 
J E N ,  I E N ,  i e N ,  

where At is the time step. Finally, application of the ICM to equation (10) yields. 

W i l e  all interfacial values denoted by the subscript ij in equations (16b) through (19), and 
(21) and (22) are linearly interpolated in terms of their corresponding connecting nodal 
values, as given by equation (7), those in equation (16a) are upstreamly interpolated 
according to equation (8). 

It can easily be verified that the new velocity field, U(n+l), computed by equation (22) 
satisfies the continuity condition, equation (9). Thus, the U and @ fields needed to satisfy the 
Navier-Stokes equations can be obtained numerically for their discrete fields, U, and @$, in 
space through the time dimension by solving equations (21) and (22). Equations (21) and 
(22) are two coupled, simultaneous equations. This is true despite the apparent completeness 
of equation (21) for the solution of the new total potential, @:"+'). The reason for this is that 
the boundary conditions on @ are expressed in terms of the derivatives of the velocity, 
U?+'). However, split techniques have been employed el~ewhere'~'~ to solve the finite 
difference equivalents of equations (21) and (22). It has been indicated that the split 
technique to decouple the Poisson and momentum equations has yielded a conditionally 
stable s o l ~ t i o n . ~ . ~ ~  Hence, this split procedure is also used to solve equations (21) and (22) 
separately. In summary, the following procedures are used to advance the solution of U and 
p from time level nAt to (n+l)At: 

(a) The complete field of the velocity is known at the beginning of the time cycle, either as 
a result of the previous cycle of calculation or from the prescribed initial conditions. It 
is assumed that this velocity field is conservative; that is, 0:") vanishes everywhere. 
However, in the real computation, this will never be zero because of roundoff and 
discretization errors. Hence, a divergence field, D!"', is computed by equation (19) and 
is used as a corrective factor for the Poisson equation. 

(b) Advective acceleration, viscous force, and vorticity fields, 4, E,, and w,, is computed 
by equations (16aM18). This is input into the Poisson equation as the load function. 

(c) The new total potential field, is obtained by solving equation (21). This may be 
accomplished by the direct method or a relaxation technique. 

(d) The new velocity field, U?+'), is calculated by equation (22). The new pressure field, 
p("+'), is then easily computed by subtracting the gravitational term from the total 
potential term in equation (11). This completes the advancement of the configuration 
to the end of the new cycle. 

The above time marching procedures are essentially similar to the conventional finite 
difference m e t h ~ d . ' ~ ~ ~ ~ * ~ ~ ' ~ - * '  The major differences are in the spatial discretization and in the 
way the spatially discrete fields of pressure and velocity are interrelated. While the applica- 
tions of conventional finite difference codes such as MAC" and SMAC' are limited to the 
regular rectangular grid system, the ICM technique may be applied to any shape and size of 
discretization. It is seen from equations (16a)-(19) and (21) and (22) that the ICM algorithm 
is designed in such a way that the change of any quantity in a compartment is equal to the 
summation of the contributions from all joined connectors and from that within the 
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Compartment itself. As a result of this, the basic algorithm remains the same for cases in one, 
two, or three dimensions, and it is easy to write a single computer program capable of 
handling all three classes of problems. 

Stability conditions 

Since the new velocity is computed explicitly, the time Step is limited by the stability 
conditions. Those conditions have been addressed thoroughly elsewhere.*' Although they 
were discussed for finite difference approximations, they are equally valid for the ICM 
algorithm provided the grid size is interpreted as the compartmental volume divided by the 
interfacial area. Following the derivations by Hirt?' the stability conditions for the cases of 
expressing the advection in the form of equation (16a) can easily be derived as: 

and 

zv :K$. 
vz .-..u... ... and A t s - G - !  for linear stability 2 AS2 

At I 
4v +: QAS: 

..... 
i.Ui +( !c2 +8vG,)$ 

A S S  .. for non-linear stability, 
2G" 

where AS is the minimum characteristic grid sue, U the averaged maximum speed, and Gu 
the average maximum velocity gradient. It should be pointed out that the terms with dotted 
circle in equations (23) and (24) are due to the upstream interpolation for the advection 
given by equation (16a). If linear interpolation had been applied to equation (16a), these 
terms would disappear.20 Thus, it is very important that the upstream interpolation must be 
used if the advection term is expressed in the form of equation (16a). Otherwise both the 
time step and grid sue must be very small such that equations (23) and (24) can be satisfied 
when the eddy viscosity is very small. 

The stability conditions for the cases of expressing the advection in the form of equation 
(16b) have yet to be derived. I would not expect they would be much different from those in 
equations (23) and (24). Examination of equation (16b) for the two-dimensional cases 
reveals an artificial smooth factor. This smooth factor is a direct result of linear interpolation 
for the kinematic energy and vorticity. 

The reason that the same stability conditions hold is obvious, since the time advancement 
in ICM is practically identical to that in finite  difference^.'^ The major differences between 
the ICM and finite difference approximations are in the spatial resolution and in how the 
spatially discrete values are interrelated. 

Boundary conditions 

Six types of boundary conditions are considered: no-slip rigid surface, free-slip rigid 
surface, prescribed normal velocity, prescribed tangential velocity, prescribed pressure, and 
continuative boundaries. For the no-slip rigid surface, the velocity and total potential at the 
boundary are computed: 

and 
u,=o, u*=o ,  w , = o  

(PB = + 2 vn UI/dIB 

where the subscript B denotes the values at the boundary, the subscript I represents the 
value at the compartment I that has one of its sides coinciding with the boundary, n is a unit 
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Figure 3. Definition of boundary variables 

vector normal outwardly to the fluid (i.e. inwardly to the rigid surface), and d,, is the 
perpendicular distance from node I to the boundary as shown in Figure 3. 

For the free-slip rigid surface, equation (26) without the second term on the right-hand 
side is used to compute QE, but the following equations are used to obtain the boundary 
velocity components: 

(274  UB = UJ - k ( n  ' u,) 
us = uI - 5 (n * U,) 

WB = wl- nr(n * ui) 
( 2 7 ~  
( 2 7 ~ )  

Equation (25) is derived based on the requirements that both the normal and tangential 
velocities on the surface are zero, whereas the requirements of equation (27) are to satisfy 
the conditions of vanishing normal velocity at the boundary and equalling the tangential 
velocities at the boundary and its corresponding interior node. Equation (26) is consistent 
with the vanishing of the normal velocity at the boundary. The prescribed normal velocity, 
tangential velocity, and pressure conditions are obvious to implement, and the continuative 
boundary simply allows the fluid to pass out of the region at its own chosen rate. 

For the case of the prescribed normal velocity condition, it will be presumed that the 
tangential velocity is zero, and for the prescribed tangential velocity condition, that the 
normal velocity is zero. Under these assumptions, the following equations are used to 
compute the velocity and @ at the prescribed normal velocity boundary: 

u B =  \(n * Un), u g =  %(n *Un), WB = a ( n  sun) (28) 
@B = @[ + 2V[(n ' u,) -(n ' UJ)]/~JB (29) 

where U, is the prescribed normal velocity vector. On the prescribed tangential velocity 
boundary with U,, the following equations are used: 
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For the prescribed pressure boundary with known @,, the following two equations are 
used: 

Finally, for the continuative boundary, the following equations may be used: 

U B  = ur, 08 = wg = wr, @B = gzB (34) 
Boundary conditions for QB in equations (26), (29), and (31) are, in fact, obtained by 
applying equation (10) to the boundary compartment and incorporating the corresponding 
conditions for the velocity vector, U, whereas in equations (33) and (34), QB is determined 
by assuming that the pressure is given. 

SAMPLE CALCULATIONS 

TWO calculational examples are used to illustrate the behaviour of the Navier-Stokes 
equations as simulated by the ICM algorithm. One is the study of the wake behind an 
obstacle in a channel of finite width, while the other is the circulatory motion of a body of 
fluid in a square cavity. Although the computer program has been designed for handling two- 
and three-dimensional problems as desired, it is applied to these simple two-dimensional 
cases for illustrative purposes. In addition, the study of the wake is a prerequisite for 
investigating vortex shedding and computing the drag forces on the obstacle, and the cavity 
problem has relevance in bearing and seal studies. 
In the first example, the fluid is assumed initially at rest in a channel with an infinitely long 

rectangular prism located in the centre between the walls whose spacing is 90 cm. The total 
length of the channel included for the computation is artificially terminated at 130 cm. The 
obstacle is located 40cm from the channel entrance. The width and length of the obstacle 
are both assumed to be 10 cm. For the ICM simulation, the channel is divided into a 13 x 9 
square mesh resulting in 116 fluid compartments and one obstacle compartment, each with a 
size of 10 x 10 cm. The walls of the channel are considered to be no-slip rigid surfaces as is 
the obstacle. The channel entrance is considered as the prescribed normal-flow boundary and 
the exit is treated as the continuative boundary. The eddy viscosity is taken as 0.01 cm2 s-’, a 
representative value for water at 20°C. The computation starts at t = 0 s with the fluid at the 
entrance impulsively accelerated to the velocity of 1.0 cm s-l and maintained at this velocity 
throughout the calculation. Figure 4 shows the flow pattern after t = 720 s when it can be 
thought of as having reached the steady state. The prominent feature of a long, slender, eddy 
vortex just behind the obstacle is clearly observed?’ Each vortex produces a back-flow (note 
arrow direction in Figure 4) over the rear portion of the obstacle. This symmetrical pair k, 
however, very susceptible to antisymmetrical disturbances” because it provides the main 
mechanism for vortex shedding. 

To investigate the effect of the obstacle size on the wake formation, the width of the 
obstacle is tripled and the simulation is repeated. The resulting flow pattern is shown in 
Figure 5. It is seen that the length of the vortex behind the obstacle is even greater. The 
reverse flow in the wake extends to the continuative boundary. This means that a portion of 
fluid is redrawn into the region of interest after it leaves the continuative boundary. 

Careful examination of this simple example indicates an interesting phenomenon that 
needs further elaboration. It has been pointed out that for the Reynolds number, Re = %d/v 
(where uo is the free stream fluid speed, d is the height of the obstacle, and v is the 
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Figure 4. Velocity plot of wake behind a small obstacle in a channel at time = 720 s 
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Figure 5.  Velocity plot of wake behind a large obstacle in a channel at time = 720 s 
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kinematic viscosity), greater than 50, the steady flow is unstable and vortices are shed." In 
other words, the vortices should not be 'regular' for Re greater than 50 and the effect of 
turbulence should become more and more pronounced as Reynolds number, Re, increases. 
In the case of a small obstacle in this example, the Reynolds number is 1000, while for the 
case of a big obstacle, it is 3000. For such high Reynolds numbers, the stable steady-state 
solutions should not persist o r  even probably exist. These puzzling situations are surmised to 
result from the geometrical symmetry and numerical viscosity on coarse computational grid 
systems. Since the solution procedures preserve symmetry to more than six digits, the steady 
solution often persists for long periods of time, even for large values of the Reynolds 
number. Thus, to effectively start the vortex shedding process, a necessary condition is to 
introduce an artificial antisymmetric mechanism in the computation. In fact, an artificial 
perturbation of vortices can be created in front of the obstacle to destroy the symmetry and 
to start the vortex shedding2' within a fairly short time. The destruction of symmetry 
provides requisite conditions for shedding. A seemingly important factor, however, that 
causes resistance to shedding is the numerical viscosity that results from coarse grid systems 
in conjunction with upstream interpolation. 

It is easy to show that upstream interpolation will yield an effective numerical viscosity, v,, 
as defined by the following eq~a t ion : '~  

INTEGRATED COMPARTMENT METHOD 

vN = $u( 1 - uAt/AS) AS (35) 

Taking the values for u = 1 cm s-', As = 10 cm, and At = 1.5 s (the time-step size used for this 
sample problem), equation (35) gives v, equal to 4.25 cm2 s-I, resulting in a numerical 
Reynolds number of 2-35. Thus, to start the vortex shedding process, a fine grid of smaller 
than As = 1.9 cm for the case of small obstacle or As = 2.7 cm for the case of big obstacle 
would probably be required in addition to an antisymmetric mechanism. This computation is 
based on the assumption that the instability of the vortex will eventually occur for Reynolds 
numbers greater than 50." The higher the Reynolds number, the greater the length of the 
eddy region will usually be. The onset of vortex shedding thus depends on the Reynolds 
number since the mechanism for it depends on the lengthening of the steady state vortex.21*22 
It is, however, beyond the scope of this paper to devise antisymmetric perturbations for 
investigating the onset of vortex shedding processes and the vortex street phenomenaz1 with 
finer grid meshes. 

As a second example to iilustrate the application of the ICM, fluid initially at rest in a 
square cavity is set into circulatory motion within the cavity by a boundary moving in its own 
plane at the top. The calculation is characterized by a Reynolds number shich is LU,/v = 
100, where L and U, are the constant length and velocity of the top wall. This Reynolds 
number is chosen because cavity flow with this number has been investigated experimentally 
and n u m e r i ~ a l l y ' ~ * ~ ~ , ~ ~  so that comparison with prior work is possible. Time-exposure 
photographs have been takenz4." of flows into which a tracer has been injected so that the 
qualitative features of the steady flow are known.14 

To start the ICM computation, the cavity is divided into 100 compartments, each 
10 x 10 cm. The constant moving velocity on the top wall is taken to be 1.0 cm s-', and the 
viscosity is chosen to be 1-0 emz s-' to make the Reynolds number 100. The flow pattern at 
time equal to 1440 s when it has reached steady state is shown in Figure 6. Comparison of 
this flow configuration with the time exposure photograph of steady flow reported by Mills24 
and reproduced by Donovan" shows almost identical qualitative results. The vortex centre 
in Figure 6 is about 76 cm from the bottom and 62 cm from the left wall. This vortex centre 
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Figure 6.  Velocity plot of circulation in the square cavity with large 
grid discretization at time = 1440 s 

Figure 7.  Velocity plot of circulation in the square cavity with small 
grid discretization at time = 1440 s 
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is in nearly perfect agreement with the experimental vortex centre determined by Donovan14 
from the enlargement of the photograph by Mills.24 

To test the effects of compartment size on the computation, the same cavity is divided into 
441 square compartments, and the calculation is repeated by the ICM computer program. 
The resulting flow is shown in Figure 7. The vortex centre is 'almost identical' to that in 
Figure 6. The velocity fields as computed by two spatial discretizations with different 
compartment sizes show no appreciable differences. However, while all fluid rotates about 
the vortex centre in Figure 6, two small counterrotating vortices exist in the two lower 
comers in Figure 7, although the main vortex occupies most of the cavity. It is thus seen that 
as the compartment size becomes smaller, smaller-scale vortices can be found." Interest- 
ingly, MoffattZ6 also found these smaller vortices at about the same location using analytical 
techniques for the boundary-layer region. 

Figures 4-7 illustrate only the qualitative trend of flow visualization. It is instructive at this 
point to compare our numerical results with those obtained by Millsz4 and DonovanL4 for the 
quantitative assessment of the ICM procedure. The position of the vortex centre and the 
patterns of the circulation in the cavity problem have yielded excellent agreement with 
previously published results. 14*24*'5 Another definite aspect of agreement is illustrated in 
Figure 8, which shows the distribution of x-component velocities along a line perpendicular 
to the moving surface and passing through the centre of the vortex. It shows excellent 
agreement with those reported by Millsz4 and acceptable comparison with those by Dono- 
van.14 The distribution of y-component velocity along a line parallel to the moving surface 
and passing through the vortex centre is shown in Figure 9. Nearly identical agreement with 
DonovanL4 is obtained and acceptable agreement with Millsz4 is achieved. 
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Figure 8. Comparison of x-component velocity distribution as simu- 
lated by Mills, Donovan, and the ICM along a line perpendicular to 

the moving surface as passing through the vortex centre. 
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Figure 9. Comparison of y-component velocity distribu- 
tion as simulated by Mills, Donovan, and the ICM along a 
line parallel to the moving surface and passing through 

the vortex centre. 

CONCLUSION 

A technique, an integrated compartment method (ICM), has been developed to set up the 
algebraic equations from the Navier-Stokes equations. It uniquely combines the merits of 
fmite differences, finite elements, and compartment analyses. The the-split procedure 
proposed by several investigators to advance the pressure and velocity fields through the 
time dimension is adopted to accomplish the evolution of flow dynamics by the ICM 
algorithm. The computer code designed to handle two- and thee-dimensional problems as 
desired is made to implement this technique. The program is applied to two simpie cases of 
wake formation behind the obstacle in a channel and circulatory motion of a body of fluid in 
the square cavity. The prelhninary application has shown promising results. Adoption of the 
program to study general three-dimensional fluid problems in complex regions is open for 
further investigation. 
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